ПОЛУЧЕНИЕ ОЧИЩЕННЫХ РАСТВОРОВ ДИГИДРО И ГИДРОФОСФАТОВ НАТРИЯ И ИХ СМЕСИ ИЗ ЭКСТРАКЦИОННОЙ ФОСФОРНОЙ КИСЛОТЫ Юсупова Г.Х.

Юсупова Гузал Хусан кызы - ассистент, кафедра химической технологии, Алмалыкский филиал Ташкентский государственный технический университет им. Ислама Каримова, Алмалык, Республика Узбекистан

Аннотация: производство фосфатов натрия напрямую из ЭФК связано с переходом примесей кислоты в продукт, что приводит к ухудшению его качества. Для получения фосфатов натрия высокого качества представлены результаты исследований по частичной нейтрализации предварительно обесфторенной и обессульфаченной ЭФК карбонатом натрия.

Ключевые слова: технология, температура, режим, примесь, мешалка, реактор, центрифуга, нейтрализация, кальций, алюминий, железо, фтор.

Технологически важные свойства ЭФК - возможность выпадения осадков при смене температурного режима, при изменении содержания примесей и рН, во многом определяют форму нахождения примесей, а, следовательно, и полноту очистки кислоты.

Далее мы рассмотрим литературные источники и патентные материалы, посвященные улучшению качества ортофосфатов аммония, получаемых из ЭФК. Совмещение осаждения с нейтрализацией кислоты аммиаком обеспечивает более глубокую очистку не только от фтора, но почти от всех присутствующих в растворе катионов. Скорость фильтрации аммофосной пульпы возрастает при этом в 6 раз, а аммофос по содержание фтора и других примесей отвечает самым высоким требованиям [1, 2].

Для очистки ЭФК от фтора и выделения в виде гексафторсиликатов щелочных металлов используют поташ либо соду. Использования поташа более предпочтительно, так как растворимость калиевых солей ниже чем натриевых и при одинаковой норме расхода поташа и соды более глубокую очистку получают при использовании поташа. Однако на практике обычно используют соду, она значительно дешевле и менее дефицитна. Более дешевые соли натрия (хлорид натрия, сульфат натрия) как правильно не используют, так как они выносят дополнительный балласт (Cl^{-} , SO_4^{2-}). Более того введение Cl⁻ в фосфорнокислый раствор резко увеличивает коррозию оборудования. Процесс выделения гексафторсиликатов щелочных металлов из ЭФК хорошо изучен и применяется на практике [3, 4]. Кристаллы гексафторсиликатов обладают хорошо фильтрующими свойствами и при этом до 80% фтора может быть выделено в виде товарного и относительно чистого фторидного продукта. Для предварительного обесфторирования ЭФК предложено также использовать сульфат и карбонат кальция, карбонатсодержащие фосфориты Каратау, шлам станций нейтрализации сточных вод фосфорнотуковых предприятий.

Производство фосфатов натрия напрямую из ЭФК связано с переходом примесей кислоты в продукт, что приводит к ухудшению его качества. Поэтому для получения качественных фосфатов натрия из неударенной ЭФК одним из приемлемых способов является ступенчатая нейтрализация кислоты с промежуточным отделением фосфатного шлама.

В связи с этим в данном разделе диссертационной работы для получения фосфатов натрия высокого качества, представлены результаты исследований по частичной нейтрализации предварительно обесфторенной и обессульфаченной ЭФК карбонатом натрия.

В проведенных экспериментах использовали предварительно обесфторенную и обессульфаченную ЭФК, полученную на АО «Ammofos-Maxam», состава (масс. %): P_2O_5 -21,66; CaO-2,07; MgO-1,24; Na₂O-0,76; Al₂O₃-1,39; Fe₂O₃-0,91; SO₃-0,84; F-0,32; pH-0,90.

Экспериментальная установка состояла термостатированного ИЗ реактора, снабженного мешалкой. В реактор наливалась ЭФК, предварительно частично очищенная от примесей фтора и сульфат-ионов. При достижении заданной температуры процесса – 60°C в реактор вносили порошкообразный нейтрализующий реагент - карбонат перемешивали в течение 30 минут, после чего осадок отделяли центрифугированием, промывали горячей водой при 80°C и спиртом. карбоната натрия варьировали В пределах 100-200% стехиометрии на образование дигидрофосфата натрия (табл.1).

Как видно из полученных данных, с увеличением нормы карбоната натрия содержание всех компонентов в ЭФК за исключением Na_2O снижается. Уменьшение содержания основного компонента — P_2O_5 происходит в незначительном количестве.

Таблица 1. Влияние нор	омы карбоната натрі	<i>ия на химический состав</i>						
жидкой фазы								

Норма,	Na ₂ O	pН	Химический состав, масс. %							
%	$\overline{P_2O_5}$		Na ₂ O	P ₂ O ₅	SO ₃	CaO	MgO	Al ₂ O ₃	Fe ₂ O ₃	F
100	0,4366	4,86	9,14	20,42	0,52	0,091	0,72	0,065	0,016	0,004
110	0,4803	5,50	9,98	20,20	0,49	0,081	0,69	0,049	0,015	0,003
120	0,5239	6,13	10,81	19,99	0,47	0,080	0,68	0,041	0,014	0,003
130	0,5676	6,39	11,62	19,78	0,45	0,079	0,67	0,036	0,013	0,003
140	0,6112	6,68	12,42	19,56	0,44	0,077	0,66	0,033	0,013	0,003
150	0,6549	7,02	13,21	19,35	0,44	0,076	0,65	0,031	0,012	0,002

160	0,6986	7,32	13,98	19,15	0,43	0,075	0,64	0,030	0,011	0,002
170	0,7422	7,65	14,74	18,95	0,42	0,074	0,63	0,028	0,011	0,002
180	0,7859	7,95	15,49	18,76	0,41	0,073	0,61	0,027	0,010	0,002
190	0,8295	8,52	16,23	18,57	0,40	0,072	0,60	0,026	0,010	0,002
200	0,8732	9,18	16,96	18,39	0,40	0,072	0,59	0,025	0,010	0,002

При нейтрализации ЭФК карбонатом натрия и увеличении его нормы от 100 до 200% содержание P_2O_5 уменьшается с 20,42 до 18,39%. Практически отсутствуют в ЭФК оксиды кальция, алюминия и железа, а также фтор. При 100%-ной и более норме натриевых соединений, количества SO_3 и MgO уменьшаются почти в два раза.

Необходимо отметить, что существенное уменьшение содержания компонентов достигается до нормы натриевых соединений 100-110 %. При дальнейшем увеличении нормы карбоната натрия содержание компонентов практически не изменяется.

Список литературы

- 1. Баранцева Г.И., Дмитревский Б.А., Ярош Е.Б., Головина З.М. Использование экстракционной фосфорной кислоты для получения чистых фосфорных солей // Минеральные удобрения. Новые исследования и разработки. Л., 1987. С. 81-84.
- 2. Гафарова А.Ф., Павлинов Р.В., Шевко З.Л., Шалагина Л.В. Получения аммофоса из обесфторенной экстракционной фосфорной кислоты при переработки рядовых высокомагнезиальных фосфоритов Каратау. Чимкент, 1983. 4 с-Деп. в ОНИИТЭХИМ г. Черкассы 09.02.1983. № 179 хп-Д 83.